Редуцированный глаз. Приведенный редуцированный глаз человека

Движение света в глазе

Редуцированный глаз.  Приведенный редуцированный глаз человека

Человеческий глаз – замечательное достижение эволюции и отличный оптический инструмент. Порог чувствительности глаза близок к теоретическому пределу, обусловленному квантовыми свойствами света, в частности дифракцией света.

Диапазон воспринимаемых глазом интенсивностей составляет , фокус может быстро перемещаться от очень короткого расстояния до бесконечности.
  Глаз является системой линз, которая формирует перевернутое действительное изображение на светочувствительной поверхности. Глазное яблоко имеет приблизительно сферическую форму с диаметром около 2,3см.

Внешняя его оболочка является почти волокнистым непрозрачным слоем, называемым склерой. Свет поступает в глаз через роговицу, представляющую собой прозрачную оболочку на внешней стороне поверхности глазного яблока. В центре роговицы расположено цветное кольцо – радужкой (радужная оболочка) со зрачком посредине.

Они действуют подобно диафрагме, осуществляя регуляцию поступления света в глаз.
  Хрусталик представляет собой линзу, состоящую из волокнистого прозрачного материала. Его форма и, следовательно, фокусное расстояние могут изменяться с помощью цилиарных мышц глазного яблока.

Пространство между роговицей и линзой заполнено водянистой жидкостью и называется передней камерой. За линзой расположено прозрачное желеобразное вещество, называемое стекловидным телом.

  Внутренняя поверхность глазного яблока покрыта сетчаткой, которая содержит многочисленные нервные клетки – зрительные рецепторы: палочки и колбочки, которые отвечают на зрительные раздражения, генерируя биопотенциалы. Наиболее чувствительной областью сетчатки является желтое пятно, где содержится наибольшее число зрительных рецепторов. Центральная часть сетчатки содержит только плотно упакованные колбочки. Глаз вращается, чтобы рассмотреть изучаемый объект.

Рис. 1. Глаз человека

Преломление в глазе

Глаз является оптическим эквивалентом обычной фотографической камеры. В нем есть система линз, апертурная система (зрачок) и сетчатка, на которой фиксируется изображение.

Система линз глаза сформирована из четырех преломляющих сред: роговицы, водяной камеры, хрусталика, стеклянного тела. Показатели их преломления не имеют значительных отличий. Они составляют 1,38 для роговицы, 1,33 для водяной камеры, 1,40 для хрусталика и 1,34 для стекловидного тела (рис. 2).

Рис. 2. Глаз как система преломляющих сред (числа являются показателями преломления)

В этих четырех преломляющих поверхностях происходит преломление света: 1) между воздухом и передней поверхностью роговицы; 2) между задней поверхностью роговицы и водяной камерой; 3) между водяным камерой и передней поверхностью хрусталика; 4) между задней поверхностью хрусталика и стекловидным телом.

  Наиболее сильное преломление происходит на передней поверхности роговицы. Роговица имеет небольшой радиус кривизны, и показатель преломления роговицы в наибольшей степени отличается от показателя преломления воздуха.  Преломляющая способность хрусталика меньше, чем у роговицы. Она составляет около одной трети общей преломляющей мощности систем линз глаза.

Причина этого различия в том, что жидкости, окружающие хрусталик, имеют показатели преломления, которые существенно не отличаются от показателя преломления хрусталика. Если хрусталик удалить из глаза, окруженный воздухом он имеет показатель преломления почти в шесть раз больший, чем в глазе.  

Хрусталик выполняет очень важную функцию.

Его кривизна может изменяться, что обеспечивает тонкое фокусирование на объекты, расположенные на различных расстояниях от глаза.

Редуцированный глаз

Редуцированный глаз является упрощенной моделью реального глаза. Он схематически представляет оптическую систему нормального глаза человека. Редуцированный глаз представлен единственной линзой (одной преломляющей средой).

В редуцированном глазе все преломляющие поверхности реального глаза суммируются алгебраически, формируя единственную преломляющую поверхность.
  Редуцированный глаз позволяет провести простые вычисления. Общая преломляющая способность сред составляет почти 59 диоптрий, когда линза аккомодирована на зрение отдаленных объектов.

Центральная точка редуцированного глаза лежит впереди сетчатки на 17 миллиметров. Луч из любой точки объекта приходит в редуцированный глаз и проходит через центральную точку без преломления. Так же, как стеклянная линза формирует изображение на листе бумаги, система линз глаза образует изображение на сетчатке.

Это уменьшенное, действительное, перевернутое изображение объекта. Головной мозг формирует восприятие объекта в прямом положении и в реальном размере.

Аккомодация

Для ясного видения объекта необходимо, чтобы после преломления лучей, изображение формировалось на сетчатке. Изменение преломляющей силы глаза для фокусировки близких и отдаленных объектов называется аккомодацией.
  Наиболее отдаленная точка, на которую фокусируется глаз, называется дальней точкой видения – бесконечность.

В этом случае параллельные лучи, входящие в глаз, фокусируются на сетчатку.
  Объект виден в деталях, когда он установлен как можно ближе к глазу. Минимальное расстояние четкого видения – около 7 см при нормальном зрении. В этом случае аппарат аккомодации находится в максимально напряжённом состоянии.

  Точка, расположенная на расстоянии 25см, называется точкой наилучшего видения, поскольку в данном случае различимы все детали рассматриваемого объекта без максимального напряжения аппарата аккомодации, вследствие чего глаз может длительное время не утомляться.

  Если глаз сфокусирован на объект в ближней точке, он должен отрегулировать свое фокусное расстояние и увеличить преломляющую силу. Этот процесс происходит путем изменений формы хрусталика. Когда объект подносят ближе к глазу, форма хрусталика изменяется от формы умеренно выпуклой линзы в форму выпуклой линзы.

  Хрусталик образован волокнистым желеобразным веществом.

Он окружен прочной гибкой капсулой и имеет специальные связки, идущие от края линзы к внешней поверхности глазного яблока. Эти связки постоянно напряжены. Форма хрусталика изменяется цилиарной мышцей. Сокращение этой мышцы уменьшает натяжение капсулы хрусталика, он становится более выпуклым и из-за естественной эластичности капсулы принимает сферическую форму.

И наоборот, когда цилиарная мышца полностью расслаблена, преломляющая сила линзы наиболее слабая. С другой стороны, когда цилиарная мышца находится в максимально сокращенном состоянии, преломляющая сила линзы становится наибольшей. Этот процесс управляется центральной нервной системой.

Рис. 3. Аккомодация в нормальном глазе

Старческая дальнозоркость

Преломляющая сила хрусталика может увеличиваться от 20 диоптрий до 34 диоптрий у детей. Средняя аккомодация составляет 14 диоптрий. В результате общая преломляющая сила глаза составляет почти 59 диоптрий, когда глаз аккомодирован для дальнего зрения, и 73 диоптрия – при максимальной аккомодации.

  При старении человека хрусталик становиться более толстым и менее эластичным. Следовательно, способность линзы изменять свою форму уменьшается с возрастом. Сила аккомодации уменьшается от 14 диоптрий у ребенка до менее 2 диоптрий в возрасте от 45 до 50 лет и становится равной 0 в возрасте 70 лет. Поэтому линза почти не аккомодируется.

Это нарушение аккомодации называется старческой дальнозоркостью. Глаза при этом сфокусированы всегда на постоянном расстоянии. Они не могут аккомодироваться как для ближнего, так и дальнего зрения.

Следовательно, чтобы видеть ясно на различных расстояниях, старый человек должен носить бифокальные очки с верхним сегментом, сфокусированным для дальнего видения, и более низким сегментом, сфокусированным для ближнего видения.

Ошибки преломления

Эмметропия. Считается, что глаз будет нормальным (эмметропичным), если параллельные световые лучи с отдаленных объектов фокусируются в сетчатку при полном расслаблении цилиарной мышцы.

Такой глаз видит ясно отдаленные объекты, когда расслаблена цилиарная мышца, то есть без аккомодации.

При фокусировании объектов ближнего диапазона расстояний в глазе сокращается цилиарная мышца, обеспечивая подходящую степень аккомодации.

Рис. 4. Преломление параллельных световых лучей в глазе человека.

Гиперметропия (гиперопия). Гиперметропия также известна как дальнозоркость. Она обусловлена либо малым размером глазного яблока, либо слабой преломляющей силой системы линз глаза.

В таких условиях параллельные световые лучи не преломляются системой линз глаза достаточно для того, чтобы фокус (соответственно изображение) находился на сетчатке. Для преодоления этой аномалии цилиарная мышца должна сократиться, увеличив оптическую силу глаза.

Следовательно, дальнозоркий человек способен фокусировать отдаленные объекты на сетчатке, используя механизм аккомодации. Для видения более близких объектов мощности аккомодации не хватает.

При небольшом резерве аккомодации дальнозоркий человек часто не способный аккомодировать глаз достаточно для фокусирования не только близких, но даже отдаленных объектов. Для коррекции дальнозоркости необходимо увеличить преломляющую силу глаза.

Для этого используют выпуклые линзы, которые добавляют преломляющую силу к силе оптической системе глаза.  

Миопия. При миопии (или близорукости) параллельные световые лучи с отдаленных объектов фокусируются перед сетчаткой, несмотря на то, что цилиарная мышца полностью расслаблена. Это бывает из-за слишком длинного глазного яблока, а также вследствие слишком высокой преломляющей силы оптической системы глаза.

  Нет механизма, с помощью которого глаз мог бы уменьшить преломляющую силу своего хрусталика менее, чем возможно при полном расслаблении цилиарной мышцы. Процесс аккомодации приводит к ухудшению видения. Следовательно, человек с миопией не может фокусировать отдаленные объекты на сетчатку. Изображение может сфокусироваться только, если объект находится достаточно близко от глаза. Следовательно, у человека с миопией ограничена дальняя точка ясного видения.  Известно, что лучи, проходящие через вогнутую линзу, преломляются. Если преломляющая сила глаза слишком велика, как при миопии, иногда она может быть нейтрализована вогнутой линзой. Используя лазерную технику, можно также откорректировать слишком большую выпуклость роговицы.  

Астигматизм. В астигматическом глазе преломляющая поверхность роговицы является не сферической, а эллипсоидальной. Это происходит из-за слишком большой кривизны роговицы в одной из своих плоскостей.

В результате световые лучи, проходящие через роговицу в одной плоскости, не преломляются так же сильно, как лучи, проходящие через нее в другой плоскости. Они не собираются в общем фокусе.

Астигматизм не может компенсироваться глазом с помощью аккомодации, но корректировать его можно с помощью цилиндрической линзы, которая исправит ошибку в одной из плоскостей.

Коррекция оптических аномалий контактными линзами

Недавно для коррекции различных аномалий зрения стали использовать пластические контактные линзы. Они устанавливаются против передней поверхности роговицы и фиксируются тонким слоем слез, который заполняет пространство между контактной линзой и роговицей. Жесткие контактные линзы делают из жесткой пластмассы.

Их размеры составляют 1мм в толщину и 1см в диаметре. Также существуют мягкие контактные линзы.  Контактные линзы заменяют роговицу как внешнюю сторону глаза и почти полностью аннулируют долю преломляющей способности глаза, которая происходит в норме на передней поверхности роговицы.

При использовании контактных линз передняя поверхность роговицы не играет значимой роли в преломлении глаза. Основную роль начинает выполнять передняя поверхность контактной линзы. Особенно важно это у лиц с ненормально сформированной роговицей.

  Другой особенностью контактных линз является то, что, поворачиваясь вместе с глазом, они дают более широкую область ясного видения, чем это делают обычные очки. Они являются также более удобными в использовании для художников, спортсменов и т.п.

Острота зрения

Способность человеческого глаза ясно видеть мелкие детали ограничена. Нормальный глаз может различать различные точечные источники света, расположенные на расстоянии 25 секунд дуги.

То есть, когда световые лучи с двух отдельных точек попадают в глаз под углом более 25 секунд между ними, они видны в качестве двух точек. Лучи с меньшим угловым разделением не могут быть различены.

Это означает, что человек с нормальной остротой зрения может различить две точки света на расстоянии 10 метров, если они друг от друга находятся на расстоянии 2 миллиметра.

Рис. 7. Максимальная острота зрения для двух точечных источников света.

Наличие этого предела предусмотрено структурой сетчатки. Средний диаметр рецепторов в сетчатке составляет почти 1,5 микрометров.

Человек может нормально различить две отдельные точки, если в сетчатке расстояние между ними составляет 2 микрометра.

Таким образом, чтобы различать два небольших объекта, они должны возбудить две разных колбочки. По крайней мере, между ними один будет находиться 1 невозбужденная колбочка.

Источники:

http://www.all-fizika.com/article/index.php?id_article=1982

Источник: http://kineziolog.su/content/dvizhenie-sveta-v-glaze

Приведенный редуцированный глаз представляет собой. Приведенный редуцированный глаз человека

Редуцированный глаз.  Приведенный редуцированный глаз человека

Система фибринолиза– ферментативная система, расщепляющая нити фибрина, которые образовались в процессе свертывания крови, на растворимые комплексы. Система фибринолиза полностью противоположна системе свертывания крови.

Фибринолиз ограничивает распространение свертывания крови по сосудам, регулирует проницаемость сосудов, восстанавливает их проходимость и обеспечивает жидкое состояние крови в сосудистом русле.

В состав системы фибринолиза входят следующие компоненты:

1) фибринолизин (плазмин).Находится в неактивном виде в крови в виде профибринолизина (плазминоген). Он расщепляет фибрин, фибриноген, некоторые плазменные факторы свертывания крови;

2) активаторы плазминогена (профибринолизина).Они относятся к глобулиновой фракции белков. Различают две группы активаторов: прямого действия и непрямого действия. Активаторы прямого действия непосредственно переводят плазминоген в активную форму – плазмин.

Активаторы прямого действия – трипсин, урокиназа, кислая и щелочная фосфатаза. Активаторы непрямого действия находятся в плазме крови в неактивном состоянии в виде проактиватора. Для его активации необходимы лизокиназа тканей, плазмы. Свойствами лизокиназы обладают некоторые бактерии.

В тканях находятся тканевые активаторы, особенно много их содержится в матке, легких, щитовидной железе, простате;

3) ингибиторы фибринолиза (антиплазмины) – альбумины. Антиплазмины тормозят действие фермента фибринолизина и превращение профибринолизина в фибринолизин.

Процесс фибринолиза проходит в три фазы.

Во время I фазы лизокиназы, поступая в кровь, приводят проактиватор плазминогена в активное состояние. Эта реакция осуществляется в результате отщепления от проактиватора ряда аминокислот.

II фаза – превращение плазминогена в плазмин за счет отщепления липидного ингибитора под действием активатора.

В ходе III фазы под влиянием плазмина происходит расщепление фибрина до полипептидов и аминокислот. Эти ферменты получили название продуктов деградации фибриногена / фибрина, они обладают выраженным антикоагулянтным действием.

Они ингибируют тромбин и тормозят процесс образования протромбиназы, подавляют процесс полимеризации фибрина, адгезию и агрегацию тромбоцитов, усиливают действие брадикинина, гистамина, ангеотензина на сосудистую стенку, что способствует выбросу из эндотелия сосудов активаторов фибринолиза.

Различают два вида фибринолиза– ферментативный и неферментативный.

Ферментативный фибринолизосуществляется при участии протеолитического фермента плазмина. Происходит расщепление фибрина до продуктов деградации.

Неферментативный фибринолизосуществляется комплексными соединениями гепарина с тромбогенными белками, биогенными аминами, гормонами, совершаются конформационные изменения в молекуле фибрина-S.

Процесс фибринолиза идет по двум механизмам – внешнему и внутреннему.

По внешнему пути активация фибринолиза идет за счет лизокиназ тканей, тканевых активаторов плазминогена.

Во внутреннем пути активации принимают участие проактиваторы и активаторы фибринолиза, способные превращать проактиваторы в активаторы плазминогена или же действовать непосредственно на профермент и переводить его в плазмин.

Значительную роль в процессе растворения фибринового сгустка играют лейкоциты в силу своей фагоцитарной активности. Лейкоциты захватывают фибрин, лизируют его и выделяют в окружающую среду продукты его деградации.

Процесс фибринолиза рассматривается в тесной связи с процессом свертывания крови. Их взаимосвязи осуществляются на уровне общих путей активаций в реакции ферментного каскада, а также за счет нервно-гуморальных механизмов регуляции.

Внутренний и внешний путь активизации

Схема фибринолиза. Синие стрелки – стимуляция; красные стрелки – подавление

Фибринолиз, как и процесс свертывания крови, протекает по внешнему или внутреннему механизму. Внешний путь активации осуществляется при неотъемлемом участии тканевых активаторов, синтезирующихся преимущественно в эндотелии сосудов. К данным активаторам относят тканевый активатор плазминогена (ТАП) и урокиназу.

Внутренний механизм активации осуществляется благодаря плазменным активаторам и активаторами форменных элементов крови – лейко­цитов, тромбоцитов и эритроцитов . Внутренний механизм активации разделяют на на Хагеман-зависимый и Хагеман-независимый.

Хагеман-зависимый фибринолиз происходит под влиянием фактора XIIа свертывания крови, калликреина, которые вызывают превращение плазминогена в плазмин. Хагеман-независимый фибринолиз происходит наиболее быстро.

Его основным назначением является очищение сосудистого русла от нестабилизированного фибрина, который образуется в процессе внутрисосудистого свертывания крови .

Ингибирование фибринолиза

Фибринолитическая активность крови во многом определяется именно соотношением ингибиторов и активаторов процесса фибринолиза.

Смотреть что такое “Фибринолиз” в других словарях:

    Фибринолиз … Орфографический словарь-справочник- (от фибрин и…лиз), растворение внутрисосудистых тромбов и внесосудистых сгустков фибрина под действием протеолитич. ферментов плазмы крови и форменных элементов, в первую очередь плазмина. Белки, осуществляющие Ф., составная часть противо… … Биологический энциклопедический словарьСущ., кол во синонимов: 1 растворение (14) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов- (фибрин + греч. lysis распад, разложение) процесс растворения фибринового сгустка в результате ферментативных реакций; при тромбозе ф. приводит к канализации тромба … Большой медицинский словарь- (от Фибрин и греч. lýsis – разложение, растворение) растворение внутрисосудистых тромбов и внесосудистых отложений фибрина под действием фермента Фибринолизина. Имеет важное значение для сохранения жидкого состояния крови и проходимости… … Большая советская энциклопедияФИБРИНОЛИЗ – (fibrinolysis) процесс растворения сгустков крови, включая расщепление нерастворимого белка фибрина под действием фермента плазмина. Последний присутствует в плазме крови в виде пассивного предшественника (плазминогена), который активируется… … Толковый словарь по медицинефибринолиз – фибролизин … Краткий словарь анаграмм- (син. фибриногенолиз трупной крови) Ф. крови трупа при внезапной смерти, вследствие чего такая кровь остается несвернувшейся; причины Ф. т. к. неясны … Большой медицинский словарьПроцесс растворения сгустков крови, включая расщепление нерастворимого белка фибрина под действием фермента плазмина. Последний присутствует в плазме крови в виде пассивного предшественника (плазминогена), который активируется одновременно с… … Медицинские терминыфибринолизин – фибринолиз ин, а … Русский орфографический словарь

Книги

  • Фармакология и фармакотерапия (комплект из 2 книг) , Сатоскар Р.С. , Бандаркар С.Д. , Первый том двухтомного руководства посвящен общим вопросам фармакологии. В нем рассмотрены пути введения и биологическое действие лекарственных веществ, их метаболизм и экскреция, механизм,… Категория: Фармакология, рецептура Издатель: Медицина,
  • Журнал «Лечащий Врач» № 01/2015 , Открытые системы , Журнал «Лечащий Врач» – профессиональное медицинское издание. Новости медицинского и фармацевтического рынков, научно-практические статьи для врачей общей практике, терапевтов, педиатров,… Категория: Медицина Серия:

В этой статье мы ознакомимся с ответом на вопрос о том, что это – фибринолиз.

Здесь мы постараемся изучить определение данного термина, его значение в жизни живых существ, фазы процесса и некоторые особенности. Также в статье будет уделено отдельное внимание вопросу о его норме в организме, в частности при беременности женщин.

Введение

Фибринолиз – это процесс, в ходе которого осуществляется растворение тромбов и/или сгустков крови. Он является неотъемлемой частью устройства механизма гомеостаза и всегда сопровождается свертыванием жидкости – крови. В данный процесс входит множество культивирующих факторов, которые его сопровождают.

Фибринолиз – это одна из важнейших защитных реакций организма, предотвращающая закупоривание фибрином сосудов, служащих магистралью для движения крови.

Еще одна важная функция – реканализация, которую можно наблюдать после того, как кровотечение было прекращено. В фибринолиз включено расщепление фибрина, которое осуществляется посредством использования плазмина.

Белок плазмина пребывает в крови, однако в неактивной форме, которую называют плазминогеном.

Внешняя активация

Фазы фибринолиза делятся в соответствии с формой активации, которую разделяют на внешнюю и внутреннюю.

Внешний механизм активации возможен лишь в том случае, если имеется набор тканевых активаторов. Как правило, последние синтезируются в сосудистом эндотелии. К таким типам молекул относят следующие вещества:

  • Урокиназа – человеческая сериновая протеаза, кодируемая PLAU-геном (10-хромосома).
  • ТАП – тканевый активатор плазминогенов.

Внутренняя активация

Осуществление внутренней активации происходит посредством применения плазменных активаторов и форменных кровяных элементов, таки как лейкоциты, эритроциты и тромбоциты. Внутреннюю систему активационного механизма делят на Хагеман-зависимую и независимую форму.

Последний тип (независимый) осуществляется лишь при наличии протеинов С и S, которые оказывают на него прямое воздействие. Зависимый фибринолиз обуславливается влиянием Также необходимо присутствие калликреина, вызывающего трансформацию плазминогенов в плазмин.

Главное предназначение Хагеман-зависимой формы заключается в очищении русла сосудов от фибрина в нестабильном виде.

Процесс ингибирования

Фибринолиз – это процесс, который вместе с рядом некоторых ингибирующих и активирующих веществ, обуславливают явление фибринолитической активности и определяют ее свойства посредством соотношения между собой.

Плазма крови включает в себя набор ингибиторов, замедляющих процесс фибринолиза. Одним из самых значимых ингибиторов, является альфа2-плазмин, связывающий плазмин, трипсин, калликреин, урокиназу и ТАП. Другими сильными ингибирующими веществами служат: С1-протеазный ингибитор и много других. Их могут вырабатывать не только плазма крови, но и фибробласты, макрофаги и моноциты.

Форма регуляции

Процессы свертывания и фибринолиза пребывают в постоянном равновесии между собой.

Явление усиления фибринолиза обуславливается изменениями в симпатической нервной системе (повышение тонуса) и увеличенным выделением таких гормонов, как адреналин и норадреналин.

Три данных причины приводят к активации фактора Хагемана. Последний в свою очередь запускает как внутренний, так и наружный механизмы.

Главными эфферентными регуляторами процессов фибринолиза и кровяного свертывания являются сосудистые стенки.

Показатели при беременности

Норма фибринолиза при беременности является очень важным моментом, на который будущей матери стоит обратить внимание. Это позволит избежать ненужных осложнений, которые могут проявиться у плода в случае, если его норма превышена или понижена.

Фибринолиз – это явление растворения тромбов и кровяных сгустков. Он напрямую влияет на формирование человеческого ребенка в утробе матери. После зачатия показатель фибриногена, связанного с явлением фибринолиза, может менять свое значение в организме от крайне малых до огромных величин. Чтобы четко определить его уровень, необходимо сделать клиническое исследование.

Роды сопровождаются большой кровопотерей и в случае отсутствия достаточного количества фибриногена, это может привести к утрате больших ресурсов крови. Процесс фибринолиза крайне важен для активности плаценты, как и содержание самого фибриногена. Оба фактора могут вызывать крайне нежелательные осложнения, например задержку в развитии плода.

На основе данных об уровне фибриногена и скорости протекания фибринолиза, доктора могут сделать выводы о наличии у матери выраженных воспалительных процессов, а также некротической тканевой конфигурации. Природа решила данную проблему при помощи увеличения уровня фибриногена в течение периода вынашивания ребенка.

Норма фибриногена

Нормой для женщин до начала беременности является показатель от двух до четырех грамм на литр. После того как плод был зачат, данная цифра возрастает до шести грамм. Этот показатель по-прежнему считается нормой. Существенное превышение фибриногена наблюдается на третьем триместре.

Несмотря на то, что увеличение показателя фибриногена при беременности является нормальной реакцией организма на формирование плода, его величина (фибриногена) все равно обладает собственным пределом, наличие которого может свидетельствовать о формировании патологических процессов. В таких случаях назначается обследование пациенты с применением гемостазиограммы.

Фибринолиз – что это значит? Ответив на данный вопрос, мы также затронули понятие фибриногена. Так к каким же последствиям может привести понижение фибриногена и изменение в процессе фибринолиза?

Вышеупомянутые изменения в организме матери могут привести к досрочной отслойке плацентарных тканей, образующих ее стенки, а также вызвать гипоксию и гипотрофию плода.

Низкое значение фибриногена может вызвать такие болезненные состояния:

  • гепатиты;
  • острая нехватка витаминов В2 и С;
  • гестоз;
  • внутрисосудистое диссеминированное свертывание.

Как правило, нехватка компонента крови фибриногена обуславливается явлением позднего токсикоза – гестоза.

Источник: https://zdos.ru/privedennyi-reducirovannyi-glaz-predstavlyaet-soboi-privedennyi.html

Лекция №11. Биофизика зрения

Редуцированный глаз.  Приведенный редуцированный глаз человека

Человеческий глаз – замечательное достижение эволюции и отличный оптический инструмент. Порог чувствительности глаза близок к теоретическому пределу, обусловленному квантовыми свойствами света, в частности дифракцией света.

Диапазон воспринимаемых глазом интенсивностей составляет , фокус может быстро перемещаться от очень короткого расстояния до бесконечности.  

Глаз является системой линз, которая формирует перевернутое действительное изображение на светочувствительной поверхности.

Глазное яблоко имеет приблизительно сферическую форму с диаметром около 2,3см. Внешняя его оболочка является почти волокнистым непрозрачным слоем, называемым склерой. Свет поступает в глаз через роговицу, представляющую собой прозрачную оболочку на внешней стороне поверхности глазного яблока.

В центре роговицы расположено цветное кольцо – радужкой (радужная оболочка) со зрачком посредине. Они действуют подобно диафрагме, осуществляя регуляцию поступления света в глаз.

 

Хрусталик представляет собой линзу, состоящую из волокнистого прозрачного материала. Его форма и, следовательно, фокусное расстояние могут изменяться с помощью цилиарных мышц глазного яблока. Пространство между роговицей и линзой заполнено водянистой жидкостью и называется передней камерой. За линзой расположено прозрачное желеобразное вещество, называемое стекловидным телом.

 

Внутренняя поверхность глазного яблока покрыта сетчаткой, которая содержит многочисленные нервные клетки – зрительные рецепторы: палочки и колбочки, которые отвечают на зрительные раздражения, генерируя биопотенциалы.

Наиболее чувствительной областью сетчатки является желтое пятно, где содержится наибольшее число зрительных рецепторов. Центральная часть сетчатки содержит только плотно упакованные колбочки.

Глаз вращается, чтобы рассмотреть изучаемый объект.

Рис. 1. Глаз человека

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.